next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                     2     2      2           2     2         2 2      2 
o2 = ideal (e*i*r - j , i*l  - c*t , b*c*f - j , a*e  - i*m, d p  - g*l ,
     ------------------------------------------------------------------------
      2 2    2 2     2 2    2
     e h  - g x , d*m u  - g )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

               2 4     4    2 3 3 3     2 2   3 2 3    4 4 2   2 3 3 2 3 2  
o3 = ideal (c*f k r*t*x  - e n p v , a*f h l*r t w  - e p u , f k m o p t  -
     ------------------------------------------------------------------------
      4 2 4 4   3 2 4 4 3 3    3   4 2
     e g n s , a e f l u v  - c o*p t )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous