i1 : O2 = orbits projectiveSpace 2 o1 = HashTable{0 => {{0, 1}, {0, 2}, {1, 2}}} 1 => {{0}, {1}, {2}} o1 : HashTable |
i2 : #O2#0 o2 = 3 |
i3 : #O2#1 o3 = 3 |
i4 : O3 = orbits projectiveSpace 3 o4 = HashTable{0 => {{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}} } 1 => {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}} 2 => {{0}, {1}, {2}, {3}} o4 : HashTable |
i5 : apply(keys O3, k -> #O3#k) o5 = {4, 6, 4} o5 : List |
i6 : apply(4, k -> #(orbits projectiveSpace 4)#k) o6 = {5, 10, 10, 5} o6 : List |
i7 : apply(5, k -> #(orbits projectiveSpace 5)#k) o7 = {6, 15, 20, 15, 6} o7 : List |
i8 : X = normalToricVariety(id_(ZZ^3) | -id_(ZZ^3)); |
i9 : isSimplicial X o9 = false |
i10 : orbits X o10 = HashTable{0 => {{0, 1, 2, 3}, {0, 1, 4, 5}, {0, 2, 4, 6}, {1, 3, 5, 7}, {2, 3, 6, 7}, {4, 5, 6, 7}} } 1 => {{0, 1}, {0, 2}, {0, 4}, {1, 3}, {1, 5}, {2, 3}, {2, 6}, {3, 7}, {4, 5}, {4, 6}, {5, 7}, {6, 7}} 2 => {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}} o10 : HashTable |
i11 : U = normalToricVariety({{4,-1,0},{0,1,0}},{{0,1}}); |
i12 : isDegenerate U o12 = true |
i13 : orbits U o13 = HashTable{0 => {} } 1 => {{0, 1}} 2 => {{0}, {1}} o13 : HashTable |